Theoretical Analysis and Reaction Mechanisms for Experimental Results of Hydrogen-Nickel Systems

Yeong E. Kim 1 and John Hadjichristos 2

1 Department of Physics, Purdue University, West Lafayette, Indiana 47907, USA
2 Praxen Defkalion GT SA, 1140 Homer Street, Suite 250, Vancouver BC V682X6, Canada

Theoretical analysis and reaction mechanisms will be presented for anomalous heat effect (AHE) observed for hydrogen-Nickel systems [1], using a generalized conventional theory [2-14] which are based on the optical theorem formulation of low-energy nuclear reactions (OTF-LENRs) [2] and also based on generalization [3] of the theory of Bose-Einstein condensation nuclear fusion (BECNF) in micro/nano-scale metal particles [4-15].

